Mechanical strain increases velocity and extent of shortening in cultured airway smooth muscle cells.
نویسندگان
چکیده
Abnormal mechanical stress on lung tissue is associated with increased mass and contractility of airway smooth muscle (ASM). We have reported that cultured ASM cells subjected to cyclic strain exhibit increased myosin light chain kinase (MLCK) and stress filaments. Increased MLCK may increase contractile velocity, whereas increased stress filaments could impede cell shortening by increasing the cell's internal load. To study strain-induced changes in cell contractility, the time course of shortening of individual cells exposed to 90 mM KCl was recorded. Length vs. time plots revealed significantly greater maximal velocity of shortening in strain cells than control (no strain). This correlated with an increase in MLCK and myosin light chain phosphorylation measured in strain cells in separate experiments. The extent of cell shortening tended to be greater in the strain cells so that increased impedance to shortening was not detected. Mechanical stress may therefore increase the contractility of ASM by increasing the content of MLCK.
منابع مشابه
Chronic oscillatory strain induces MLCK associated rapid recovery from acute stretch in airway smooth muscle cells.
A deep inspiration (DI) temporarily relaxes agonist-constricted airways in normal subjects, but in asthma airways are refractory and may rapidly renarrow, possibly due to changes in the structure and function of airway smooth muscle (ASM). Chronic largely uniaxial cyclic strain of ASM cells in culture causes several structural and functional changes in ASM similar to that in asthma, including i...
متن کاملCellular Responses to Mechanical Stress Selected Contribution: Mechanical strain increases force production and calcium sensitivity in cultured airway smooth muscle cells
Smith, Paul G., Chaity Roy, Steven Fisher, Qi-Quan Huang, and Frank Brozovich. Selected Contribution: Mechanical strain increases force production and calcium sensitivity in cultured airway smooth muscle cells. J Appl Physiol 89: 2092–2098, 2000.—Cultured airway smooth muscle cells subjected to cyclic deformational strain have increased cell content of myosin light chain kinase (MLCK) and myosi...
متن کاملHuman airway smooth muscle is structurally and mechanically similar to that of other species.
Airway smooth muscle (ASM) plays a vital role in the exaggerated airway narrowing seen in asthma. However, whether asthmatic ASM is mechanically different from nonasthmatic ASM is unclear. Much of our current understanding about ASM mechanics comes from measurements made in other species. Limited data on human ASM mechanics prevents proper comparisons between healthy and asthmatic tissues, as w...
متن کاملMechanics and crossbridge kinetics of tracheal smooth muscle in two inbred rat strains.
The aim of the study was to determine whether the nonspecific in vivo airway hyperresponsiveness of the inbred Fisher F-344 rat strain was associated with differences in the intrinsic contractile properties of tracheal smooth muscle (TSM) when compared with Lewis rats. Isotonic and isometric contractile properties of isolated TSM from Fisher and Lewis rats (each n=10) were investigated, and myo...
متن کاملSPHINGOMYELIN METABOLITES A S SECOND MESSENGERS IN AIRWAY SMOOTH MUSCL E CELL P ROLIFERATION
Sphingolipid metabolism was examined in guinea-pig airway smooth muscle cells stimulated by platelet-derived growth factor (PDGF) and 4β-phorbol 12- myristate 13-acetate (PMA), as mitogens and bradykinin (BK) as non-mitogen. Stimulation of the cells by PMA and PDGF for 60 min. at 37°C induced the following changes in sphingolipid metabolites: in cells prelabeled with PH] palmitate, a 1.2 f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 277 2 Pt 1 شماره
صفحات -
تاریخ انتشار 1999